Лучший

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » Лучший » Тестовый форум » 33


33

Сообщений 1 страница 7 из 7

1

Песколовки защищают отстойники от загрязнения минеральными примесями. Конструкция песколовок может быть различной и зависит от количества поступающих стоков. После песколовок воды поступают в первичные отстойники, где осуществляется осаждение нерастворимых взвешенных частиц как органического, так и минерального происхождения. Песколовки бывают горизонтальные, вертикальные и щелевые.

Горизонтальные и вертикальные песколовки применяют на очистных сооружениях, щелевые — на каналах. Горизонтальные и вертикальные песколовки устраивают, если объем хозяйственно-фекальных вод превышает 300 м3/сут. Песколовки проектируют двухсекционными, чтобы во время ремонта и очистки от песка работала хотя бы одна секция, даже с временной перегрузкой.

В горизонтальной песколовке процесс осаждения песка и других частиц минерального происхождения осуществляется при горизонтальном движении жидкости со скоростью 0,1 м/сек. В вертикальных песколовках осаждение осуществляется в период подъема жидкости снизу вверх со скоростью 0,05 м/сек. Выбор того или иного типа песколовки зависит от общей высотной компоновки сооружения.
Отстойники — основной и наиболее распространенный тип очистных сооружений. В них оседают нерастворенные взвешенные частицы как органического, так и минерального происхождения. Отстойники бывают с горизонтальным движением воды — горизонтальные и с вертикальным движением воды — вертикальные.

Кроме этого бывают радиальные отстойники, в которых вода движется в радиальном направлении. Расчет отстойников для хозяйственно-фекальных вод выполняется с наибольшим приплывом сточных вод.

Отстойники могут быть первичными и вторичными. Первичные отстойники устанавливают перед сооружениями биологической очистки, а вторичные — устанавливают для вторичного просветления воды после сооружений биологической очистки. После биофильтров вторичные отстойники одновременно являются и контактными. Если местные условия позволяют выпускать сточные воды после первых отстойников в водоемы, то в схеме механической очистки должно предусматриваться обеззараживание (хлорирование) в контактном резервуаре.

Осадок, полученный в первичных отстойниках, перегнивает, а затем его высушивают на специально отведенных площадках и используют в качестве сельскохозяйственного удобрения. Вертикальные отстойники могут быть прямоугольными или круглыми в плане.

Чаще всего используются круглые отстойники, которые представляют собой резервуары со срезанным коническим днищем. В центре отстойника устанавливается труба, по которой сточные воды поступают к нижней части отстойника. По периферии отстойника устраивают сборные желоба. Осаждение суспензии в отстойнике осуществляется тогда, когда сточная вода отбивается от зонта и центральной трубы и со скоростью 0,7 мм/сек поднимается вверх. Образовавшийся в отстойнике осадок удаляется иловой трубой под действием столба воды.

Горизонтальные отстойники представляют собой резервуары, длина которых в 4-5 раз больше их ширины. Устраивают их преимущественно из железобетона, кирпича, камня и других водостойких материалов. Резервуары имеют наклон в сторону приямка, который устраивают вначале отстойника (за потоком воды). Такая конструкция обеспечивает наиболее интенсивное осаждение суспензии.

Для равномерного распределения потока сточных вод по ширине отстойника вначале и в конце его устраивают желоба. Для распределения жидкости по всей глубине отстойника в начале на некоторую глубину устанавливается отбойная доска. Чтобы предотвратить вынос на поверхность жидкости веществ, которые всплывают, в конце отстойника устанавливают плавающую доску.

В больших отстойниках для удаления осадка устанавливают механические скребки, с помощью которых осадок подается в приямок, а оттуда удаляется иловой трубой. Радиальные отстойники являются разновидностью горизонтальных. В плане они представляют собой круглые железобетонные резервуары, в которых жидкость движется в горизонтально-радиальном направлении от центра к периферии.

Вода поступает в центральную распределительную трубу, а собирается периферийным лотком. В отстойниках данного типа хорошо объединяется смена рабочего сечения с динамикой осаждения суспензии. Поперечное сечение отстойника от центральной трубы к периферийному лотку постепенно увеличивается.

Обычный эффект осветления сточных вод в первичных отстойниках не более 60%, а вынос взвешенных частиц превышает 100-150 мг/л, что создает неблагоприятные условия для дальнейшей биологической очистки сточных вод. Для большей эффективности осветления сточных вод применяют взвешенные фильтры (аналогично с осветлением питьевой воды). В осветлителях со взвешенным фильтром осуществляется взаимная коагуляция взвешенных частиц или флокуляция.

Так как загрязненные сточные воды являются дисперсной системой, в которой крупные частицы в совокупности с мелкими ускоряют коагуляцию, задача состоит в том, чтобы создать оптимальные условия для коагуляции сточных вод. Для этого выполняют предварительную аэрацию сточных вод в аэраторах или в биокоагуляторах.

Аэраторы и биокоагуляторы — это сооружения, в которых осуществляются процессы безреагентной коагуляции и флокуляции примесей с чрезмерным илом при продувке воды сжатым воздухом.

Аэраторы представляют собой прямоугольные резервуары с перегородками для удлинения путей движения сточной воды. Аэраторы служат для повышения степени осветления сточных вод в отстойниках, для устранения из сточной воды жидкого жира и подготовки к биологической очистке стоков.

Аэрация представляет собой продувание сточной воды воздухом на протяжении 10-30 мин при наличии активного ила со вторичных отстойников. Воздух подается снизу через отверстия в трубах или через фильтры.

Биокоагулятор представляет собой вертикальный или горизонтальный отстойник с кольцевой отстойной зоной и центральной камерой биокоагуляции, в которой осуществляется перемешивание и контакт излишнего активного ила со сточными водами. Чтобы снизить расход воздуха, в центральной камере биокоагуляции, в углах, предусматривают четыре треугольные короба, а на глубине 2,5-3,0 м устанавливают горизонтальные короба с фильтрующими пластинами.

Смесь воды с излишками активного ила подают подводящим лотком в центральную трубу. Сточную воду вводят в биокоагулятор ниже фильтрующих пластин, чтобы избежать засорения их крупными примесями. Концентрация подаваемого активного ила составляет приблизительно 7 г/л, а его количество должно составлять приблизительно 1% от расхода сточных вод.

К фильтрующим пластинам подводят сжатый воздух. При помощи сжатого воздуха перемешивают активный ил со сточными водами и поддерживают ил во взвешенном состоянии. Интенсивность аэрации сохраняют в пределах 1,8-2,0 м2/час.

Жидкость, барбатированная воздухом, приобретает циркуляционное направление движения по четырем циркуляционным коробам, установленным в углах камеры биокоагуляции. Короба короче стенок, которые отгораживают камеру биокоагуляции. В кольцевой отстойной зоне биокоагулятора, между центральной камерой и наружными стенами, создается взвешенный слой активного ила, уровень которого зависит от расхода сточных вод.

Взвешенный слой благоприятствует коагуляции загрязнений, позволяет выровнять скорость подъема воды в отстойной зоне и ликвидировать обычную для вертикальных отстойников направленность вертикального потока жидкости. Профильтрованная сквозь взвешенный слой вода переливается через периферийный водослив в сборный лоток. Перед периферийным лотком устанавливают доску, которая препятствует выносу плавающих частиц. Уплотненный ил удаляется иловой трубой под гидростатическим давлением после открытия задвижки.

0

2

Водоподготовка воды обычно включает следующие стадии:
осветление воды - удаление из воды коагуляцией коллоидных и взвешанных частиц;
обеззараживание воды - удаление болезнетворных микроорганизмов;
смягчение воды - удаление труднорастворимых солей кальция и магния;
деминерализацию воды- удаление легкорастворимых солей;
дегазацию - удаление растворенных в воде газов;

0

3

Водоочистка - это комплекс технологических процессов, имеющих целью довести качество воды, поступающей в водопровод из источника водоснабжения, до установленных показателей.
Воды поверхностных водоисточников (рек, озёр) обычно непригодны для питья из-за мутности, цветности и более высокого, чем это допустимо для питьевой воды, содержания бактерий. Поэтому до подачи воды в хозяйственно-питьевой водопровод её осветляют (удаляют взвешенные и коллоидальные частицы), обесцвечивают и обеззараживают (освобождают от болезнетворных микроорганизмов). Для осветления и обесцвечивания воды на очистных сооружениях проводят коагуляцию взвешенных и коллоидальных загрязнений сернокислым алюминием или хлорным железом; основную массу скоагулированных загрязнений задерживают в отстойниках или осветлителях, а воду "доосветляют" на фильтрах (песчаных или двухслойных). Воду с содержанием взвеси менее 150 мг/л можно осветлять на контактных осветлителях с введением коагулянта непосредственно перед поступлением воды в слои фильтрующей загрузки. Для обеззараживания в исходную или фильтрованную воду вводят жидкий хлор, хлорную известь или озон. Хорошо осветлённая вода и вода подземных водоносных горизонтов может обеззараживаться ультрафиолетовыми лучами с длиной волны 2000-3000A, обладающими бактерицидным действием. Источниками ультрафиолетового излучения служат ртутно-кварцевые или аргоно-ртутные лампы.

Если вода в источнике водоснабжения имеет жёсткость (суммарное содержание солей кальция и магния), большую, чем допускается по нормам, то её до подачи в водопроводную сеть умягчают. Применяют два метода умягчения воды - реагентный и катионитовый. Реагентный метод сводится к осаждению солей жёсткости известью (устранение так называемой карбонатной жёсткости) и содой (некарбонатной жёсткости). Он позволяет снизить общую жёсткость воды до 0,5-0,7 мг-экв/л. Для более глубокого умягчения воды используют катионитовый метод (см. Иониты), снижающий жёсткость воды до 0,03 мг-экв/л. Если вода содержит более 0,3 мг/л железа, её обезжелезивают. Подземные воды обычно обезжелезивают аэрацией (обогащают кислородом воздуха, который окисляет соли двухвалентного железа в соли трёхвалентного, выпадающие в осадок в виде гидроокиси железа), поверхностные - коагулированием. Для удаления из воды других растворённых солей её опресняют или обессоливают на ионитах. Дегазация воды (удаление сероводорода, метана, радона, углекислого газа и других растворённых газов) производится, как правило, аэрацией. Избыток фтора (при его содержании в воде более 1,5 мг/л) удаляют фильтрованием воды через активированную окись алюминия.

На рынке представлено большое многообразие различных фильтров и технологического оборудования различных конструкций и разного назначения, выпускаемых и поставляемых большим количеством фирм. Не вдаваясь в технические подробности все это многообразие оборудования можно условно разделить на следующие виды:
Фильтры грубой очистки;

0

4

Механические решетки Nijhuis Water Technology применяются для отделения взвешенных веществ от воды. Выбор фильтрационной системы и ширины ячейки (от 0,25 до 15 мм), зависит от типа и состава воды. Как правило, прохождение воды через механические решетки и фильтры является начальным этапом во всей схеме очистки воды. Ниже перечислены основные типы фильтров: аквагребень, ситяной отстойник и вращающийся барабанный фильтр. Помимо стандартных типов, Nijhuis Water Technology проектирует и конструирует системы очистки под заказ.

Аквагребень - это самоочищающаяся система, которая устанавливается непосредственно в открытый канал. В результате чего отпадает необходимость в использовании насоса. Поверхность фильтра состоит из циркулирующей ленты, изготовленной из пластика с зубцами, приводимыми в движение цепным приводом. Размер улавливаемых частиц определяется расстоянием между пластиковыми зубцами. Стандартное расстояние 1, 3, 6, 10 и 15 мм. Окончательный дизайн определяется размерами существующего канала. В случае необходимости Nijhuis Water Technology поставляет каналы из нержавеющей стали с входными и выходными фланцами.

Ситяной отстойник
Особенность ситяного отстойника заключается в том, что он удерживает даже частицы, которые в два раза меньше ширины ячейки, а вода свободно проходит дальше вниз. Стандартная ширина ячейки 0.25, 0.50, 0.75, 1, 1.5, и 2 мм. Во избежание засорения экрана, стандартный ситяной отстойник может оборудоваться устройством очистки с использованием воды или щеток. Устройство оснащено мотором, который обеспечивает вибрацию сита. В результате загрязнение сита не происходит, и взвеси быстро удаляются. При необходимости ситяной отстойник может дополнительно оборудоваться разбрызгивающим чистящим устройством.

Вращающийся барабанный фильтр
Во вращающемся фильтре поток воды направлен сверху вниз и проходит через вращающийся барабан. В процессе вращения происходит удаление взвесей, что способствует самоочистке фильтра. Система переносит взвеси на скребковую пластину, откуда они и удаляются. Размер отделенных частиц определяется расстоянием между прутьями конической формы, которые формируют барабан. Стандартная ширина ячейки 0.5, 0.75, 1, 1.5, и 2 мм.

0

5

Озонирование воды

Озон является наиболее сильным из всех известных в настоящее время окислителей. Для обработки воды он используется уже около ста лет. Однако только в последние 25–30 лет благодаря разработке озонаторов третьего поколения, резко упростивших и удешевивших его производство, началось бурное внедрение процессов озонирования воды. Предлагаются установки для производства озона в количестве от граммов до десятков килограммов в час. Они могут использоваться в небольших устройствах обработки воды и городских станциях.

Преимуществом озонирования воды является неспособность озона, в отличие от хлора, к реакциям замещения. Особенностью озона является и быстрое разложение в воде с образованием кислорода, т. е. озон обладает практически полной экологической безопасностью. К недостаткам озона относится сложность его производства на месте использования, необходимость больших затрат электроэнергии на его синтез, а также малое последействие, поскольку озон разлагается в воде примерно за 30 минут. Это заставляет проводить финальное хлорирование, правда, с дозой, сущест венно уменьшенной по сравнению с обычным способом, что предотвраща ет образование в воде токсичных хлорпроизводных.

Преимущество озонирования воды перед хлорированием объясняется следующим. По традиционной схеме улучшение качества воды обеспечивается тремя процессами. Для обесцвечивания воды применяется коагуляция. Улучшение органолептических свойств воды достигается при помощи сорбционных методов. Для обеззараживания воды применяется хлорирование. Необходимость использования трех различных процессов усложняет технологию обработки воды . При использовании коагулянтов в воду вносятся дополнительные загрязнения. Из-за значительной стоимости сорбционных загрузок часто приходится отказываться от улучшения вкусовых свойств воды. Использование хлора приводит к образованию в воде упомянутых хлорорганических соединений, оказывающих сильное действие на организм человека.

Озонирование за счет высокой окислительной способности озона позволяет одновременно достичь обесцвечивания воды, устранения привкусов и запахов и ее обеззараживания. При этом в воду не вносятся посторонние примеси и не образуются вредные для человека соединения.

Механизм бактерицидного действия озона объясняется его влиянием на обмен веществ в живой клетке, при котором нарушается равновесие превращения активной сульфидной группы в неактивную группу. Установлено, что озон универсально разрушает микроорганизмы в воде. Это можно объяснить способом действия озона. В отличие от обычно употребляемого хлора, озон не дает обратного замедляющего эффекта на внутриклеточные ферменты. Из-за высокой окислительной способности озон действует как окислитель на стенку-мембрану клетки вплоть до проникновения внутрь микроорганизма и окисления определенных важных компонентов (протеинов, ферментов, ДНК, РНК). Когда большая часть мембраны разрушена, клетка погибает. Если стенка-мембрана разрушена частично, клетка может соединиться с другой клеткой, что объясняет наблюдаемые иногда явления регенерации (сублетальное поведение).

Озонирование воды имеет преимущества перед хлорированием по воздействию на органолептические характеристики воды. Известно, что окраска вод обусловлена наличием попадающих в них в результате вымывания из почвы или торфа окрашенных гумусовых кислот (в составе гумусовых кислот различают гуминовые кислоты и фульвокислоты). При этом обесцвечивание раствора гуминовых кислот почвенного и торфяного происхождения озоном не связано с деструктивным окислением, поскольку в углекислый газ в этих условиях переходит незначительная часть углерода. Наблюдаемое обесцвечивание объясняется окислением фенольных гидроксилов до соответствующих хинонов и далее разрывом молекул по мостикам, соединяющим ароматические ядра, и образованием менее окрашенных фульвокислот, а гумусовые кислоты остаются в воде в виде малоокрашенных креновых и надкреновых кислот.

При озонировании продуктов жизнедеятельности микроорганизмов и водорослей происходит практически полное удаление запахов и привкусов в широком диапазоне кислотности, температуры и ионного состава воды.

Интересным вариантом использования озонирования является его применение при производстве бутилированной воды . Вводя в воду не посредственно перед розливом избыточное количество озона, добива ются того, что после закупорки бутылей выделяющийся из воды озон стерилизует их верхнюю часть и пробку. Затем озон медленно разлага ется, насыщая воду кислородом, что придает ей родниковый вкус.

Используется озон и для «холодной стерилизации» емкостей, трубопроводов и бутылок. Для этого их обрабатывают водой с растворенным значительным избытком озона.

По современной технологии производство озона осуществляется на месте применения на специальных установках – озоногенераторах. Озон образуется при высокочастотном коронном разряде в потоке осушенного воздуха. Расход энергии составляет 5–15 кВт/кг О3·ч . Концентрация озона в воздухо-озонной смеси составляет 50–250 г/м3.

Следующей задачей является введение озона в воду. Для его растворения используются методы барботажа и эжекции.

В крупных промышленных установках наиболее часто используется барботаж озоно-воздушной смеси через очищаемую воду . Сложнейшей проблемой является обеспечение одинакового времени контакта пузырьков с водой. Для этого необходимо создание равномерных пузырьков, а также их введение по всему объему воды.

В установках относительно небольшой производительности наиболее распространен и достаточно эффективен метод эжекции. Очищаемая вода проходит через эжектор, создает в нем разрежение, при котором в воду засасывается необходимое количество озона. Интенсивное перемешивание в эжекторе диспергирует озон на мельчайшие пузырьки с огромной поверхностью контакта. Поэтому скорость растворения велика. Кроме того, разрежение на линии после озоногенератора гарантирует безопасность от попадания озона в воздух рабочих помещений.

После растворения озона необходимо обеспечить определенное время его контакта с водой для осуществления химических реакций окисления и удаления из воды избыточного количества воздуха и озона. Для этого устанавливают контактно-сепарационный аппарат, из которого вода направляется на угольный фильтр для доочистки от органики и деструкции озона.

Совместить эффективное растворение озона и заданную длительность его контактирования с водой позволяют пульсационные колонны со специальными распределительными тарелками. Озоно-воздушная смесь вводится в нижнюю часть колонны; возвратно-поступательное движение воды, создаваемое специальным пульсатором, и распределительные тарелки обеспечивают ее диспергацию до пузырьков заданных оптимальных размеров, которые поднимаются противотоком к двигающемуся вниз потоку воды. Этим достигается высокая степень использования озона при большой удельной производительности аппарата.

При любом методе подачи озона он полностью никогда не растворяется и удаляется с отходящими из адсорбера газами. Допустимое содержание озона в воздухе составляет 0,2 мг/м3. Поэтому этот озон должен быть деструктирован. Используются каталитический и термический методы.

0

6

ДЕМИНЕРАЛИЗАЦИЯ
В некоторых производственных процессах было установлено требование применять очень чистую воду, часто полностью деминерализованную, в частности, в фармакологической, косметической, пищевой, электронной, энергетической (вода для паровых котельных) промышленности, в лабораторной аналитике, для кондиционеров, в лечении, а также всюду там, где высокое качество воды обеспечивает бесперебойную работу техники.

Для процессов водоподготовки и деминерализации воды а также для очистки водопроводной воды мы предлагаем ионообменную технологию. Благодаря этому методу из воды можно устранить практически все растворенные ионовые вещества. Ионовый обмен проводят в системе из двух колонн. Одна заполнена сильно кислотным катионитом, работающем в водородном цикле, а вторая анионитом (сильно щелочным), работающим в гидроксильном цикле. Эта технология требует расширения установки системами складирования и распределения NaOH и HCl для регенерации слоев и нейтрализации после регенерационных стоков.

Можем также применять ионовый обмен на смешанном слое. Смешанный слой – это комбинация ионитов, состоящая из сильно кислотных катионитов и сильно щелочных анионитов. Обмен на смешанном слое проводят в одноколонном вместилище.

0

7

Обратный осмос, известный также как гиперфильтрация, лучший из известных способов фильтрации воды. Обратный осмос позволяет удалять из водной массы мельчайшие частицы величиной с ионы. И для удаления из питьевой воды солей и других включений с тем, чтобы улучшить цвет, вкус или свойства жидкости. Этот процесс - обратный осмос, может быть использован для очистки таких жидкостей как этанол и гликоль, которые пройдут через обратноосмотическую мембрану, в то время как другие ионы и примеси она не пропустит. Обратный осмос используют в фильтрах для очистки воды, в том числе, для питья. Фильтры обратного осмоса применяют для производства воды, которая отвечает самым строгим из существующих требований. Самые жесткие требования конечно же предъявляет промышленная водоподготовка.
В обратноосмотической технологии используется полупроницаемая мембрана, которая пропускает только молекулы воды и задерживает молекулы загрязняющих веществ. Наиболее часто в технологии обратного осмоса используется процесс, известный как перекресное течение, что позволяет мембране самоочищаться. В то время, как часть жидкости проходит через мембрану, другая ее часть двигается в обратном направлении, вымывая из мембраны обратного осмоса задержанные частички. В процессе обратного осмоса требуется движущая сила, которая будет проталкивать жидкость через мембрану, наилучшим вариантом является давление, создаваемое помпой. Чем выше давление, тем больше движущая сила. Установки обратного осмоса способны задерживать бактерии, соли, сахара, протеины, частицы, красители и другие загрязняющие вещества, молекулярная масса которых больше 150-250 далтонов. Разделение ионов обратным осмосом происходит с участием заряженных частиц. Это значит, что расстворенные ионы, которые несут заряд, равный зараряду солей, более вероятно будут отброшены мембраной, чем те, которые не заряжены, например органика. Чем больше заряд частицы и ее размер, тем выше вероятность того, что она будет отброшена мембраной.
Идеальной системы обратного осмоса для дома не существует. Некоторые разработки лучше остальных, но ни одна из них не является панацеей от всех бед. Большинство производителей и дилеров рекомендуют подбирать фильтры обратного осмоса в зависимости от показателей исходной воды и от требований, выдвигаемых покупателем к качеству питьевой воды. Но бывает, что и этого не достаточно, ведь установка системы обратного осмоса не такая простая, как проточные фильтры воды. Иногда это работает, иногда нет.
Основные действующие компоненты системы:
- обратноосмотическая мембрана;
- ограничитель течения воды;
- седиментный предварительный фильтр воды;
- предватительный фильтр воды и постфильтр из активированного угля;
- накопительный бак;
- помпа.
Даже самая простые фильтры обратного осмоса не могут использоваться без первых трех компонентов, в то время как последние три служат для удослетворения специфических нужд покупателя. Правильный подбор и использование каждого компонента являются необходимыми для обеспечения правильной и бесперебойной работы системы обратного осмоса.

0


Вы здесь » Лучший » Тестовый форум » 33